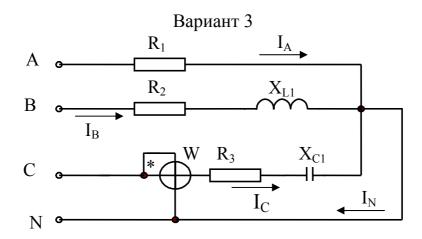
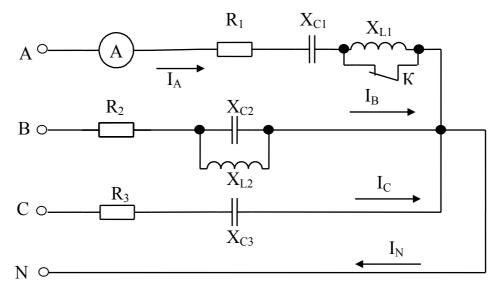

ЗАДАНИЕ ПО ТРЕХФАЗНЫМ ЦЕПЯМ ПЕРЕМЕННОГО ТОКА ПРИ СОЕДИНЕНИИ НАГРУЗКИ «ЗВЕЗДОЙ»

Система линейных напряжений всегда симметрична. Условное обозначение на схемах:

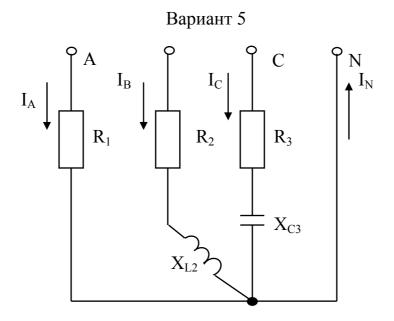


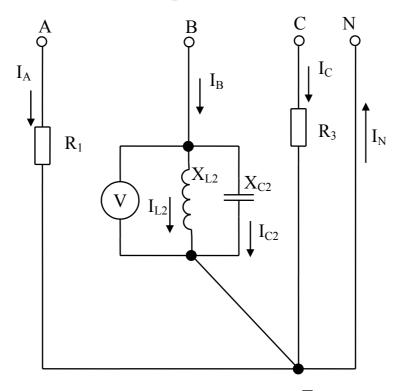
Дано: R_1 =5 Ом; R_3 =5 $\sqrt{3}$ Ом; X_{L1} =7 $\frac{1}{7}$ Ом; X_{C1} =5 $\sqrt{3}$ Ом; X_{C3} =5 Ом; показания вольтметра V составляют 25 $\sqrt{3}$ В.



Дано: $R_2=R_3=X_{L1}=10\,$ Ом; $X_{L2}=X_{C3}=10\,\sqrt{3}\,$ Ом; показания вольтметров V1, V2 и V3 одинаковы; показания амперметра A составляют 10 A.

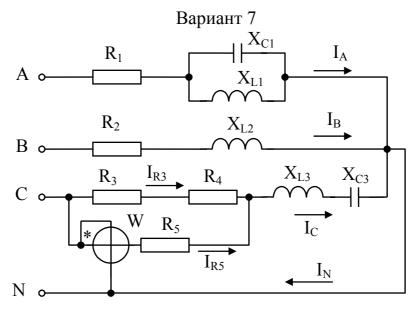
Определить R_1 , X_{C1} , все токи, линейные и фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.


Дано: R_1 =20 Ом; R_2 = R_3 =10 Ом; X_{L1} = X_{C1} =10 $\sqrt{3}$ Ом; показания ваттметра W составляют 360 Вт.

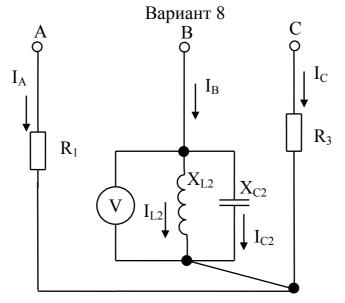

Дано: $R_1=R_2=R_3=15~{\rm Om}\,;~X_{L2}=20~{\rm Om};~X_{C1}=X_{C3}=20~{\rm Om};~X_{C2}=10~{\rm Om};$ $U_{\mathcal{I}}=200\,\sqrt{3}~{\rm B}.$

Каким должно быть сопротивление X_{L1} , чтобы при размыкании ключа K показания амперметра A не изменились?

Определить все токи, фазные напряжения, активную, реактивную, полную мощности при замкнутом ключе K. Построить векторную диаграмму при замкнутом ключе K.

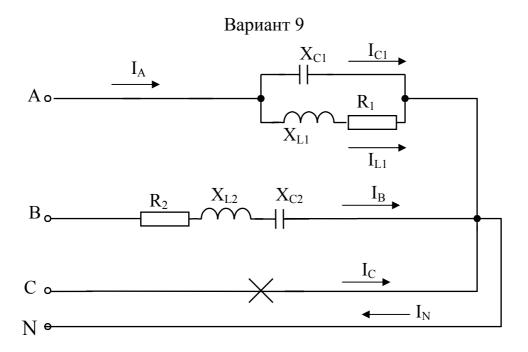


Дано: R_1 =40 Ом; R_2 = R_3 =20 Ом; X_{L2} = X_{C3} =20 $\sqrt{3}$ Ом; U_{JI} =40 $\sqrt{3}$ В.

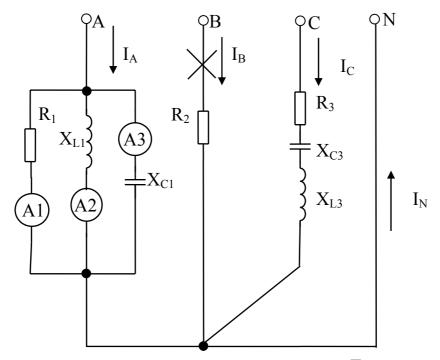


Дано: $R_1 = R_3 = 100$ Ом; $X_{L2} = X_{C2} = 50$ Ом, $U_{JI} = 300\sqrt{3}$ В.

Определить все токи, фазные напряжения, показания вольтметра V, активную, реактивную, полную мощности. Построить векторную диаграмму.

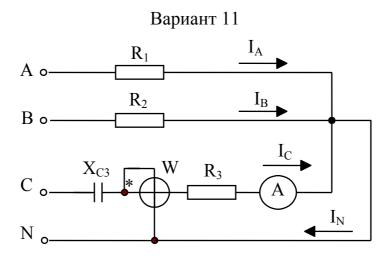


Дано: $R_1 = R_2 = 40\sqrt{3}$ Ом; $R_3 = 50\sqrt{3}$ Ом; $R_4 = 10\sqrt{3}$ Ом; $R_5 = 120\sqrt{3}$ Ом; $X_{L1} = 20$ Ом; $X_{L2} = 40$ Ом; $X_{L3} = 90$ Ом; $X_{C1} = 40$ Ом; $X_{C3} = 50$ Ом; $U_J = 400\sqrt{3}$ В.

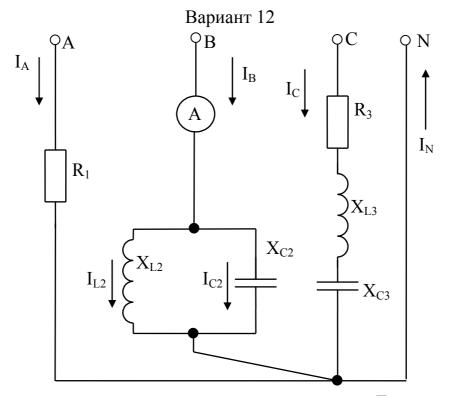


Дано: $R_1 = R_3 = 100$ Ом; $X_{L2} = X_{C2} = 25\sqrt{3}$ Ом, $U_{J} = 200$ В.

Определить все токи, фазные напряжения, показания вольтметра V, активную, реактивную, полную мощности. Построить векторную диаграмму.

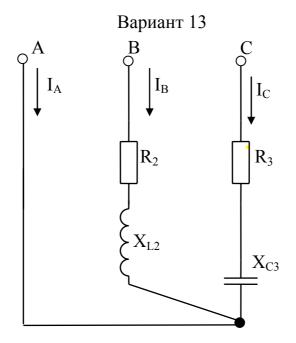


Дано: R_1 =20 $\sqrt{3}$ Ом; R_2 = $\frac{80}{\sqrt{3}}$ Ом; X_{L1} =20 Ом; X_{L2} = $\frac{80}{\sqrt{3}}$ Ом; X_{C1} =80 Ом; X_{C2} = $\frac{80}{\sqrt{3}}$ Ом; U_{Λ} =100 В; фаза C находится в обрыве.

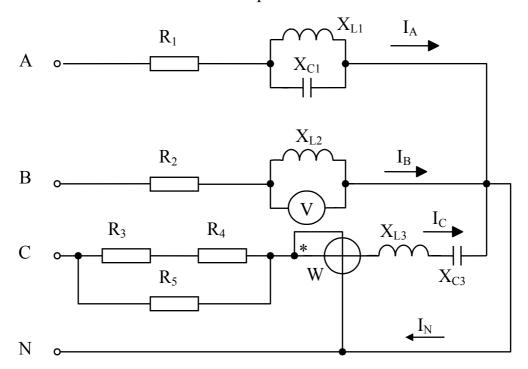


Дано: R_1 = R_2 = R_3 =10 Ом; X_{L3} = X_{C3} =20 Ом; U_{J} =40 $\sqrt{3}$ В; показания амперметров A1, A2 и A3 одинаковы; фаза B находится в обрыве.

Определить X_{L1} , X_{C1} , показания амперметров, все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

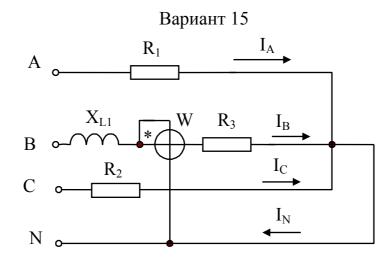


Дано: R_1 = R_2 =40 Ом; R_3 =10 Ом; X_{C3} =10 $\sqrt{3}$ Ом; показания амперметра A составляют 4 А.

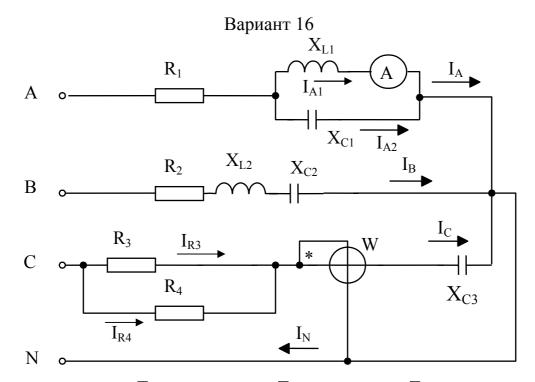


Дано: R_1 = R_3 = X_{L2} =100 Ом; X_{L3} = X_{C3} =50 Ом; U_{J} =300 $\sqrt{3}$ В; показания амперметра A равны нулю.

Определить X_{C2} , все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

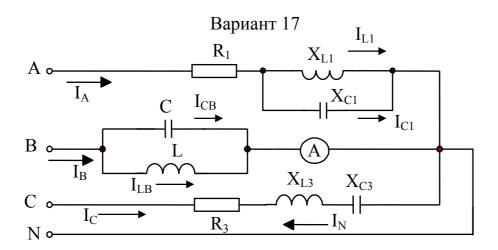


Дано: $R_2 = R_3 = 20$ Ом; $X_{L2} = X_{C3} = 20\sqrt{3}$ Ом; $U_J = 40$ В.

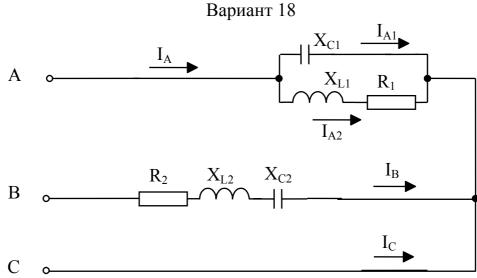


Дано: $R_1=R_2=40\sqrt{3}$ Ом; $R_3=50\sqrt{3}$ Ом; $R_4=10\sqrt{3}$ Ом; $R_5=120\sqrt{3}$ Ом; $X_{L1}=20$ Ом; $X_{L2}=40$ Ом; $X_{L3}=90$ Ом; $X_{C1}=40$ Ом; $X_{C3}=50$ Ом; показания вольтметра V составляют 120 В.

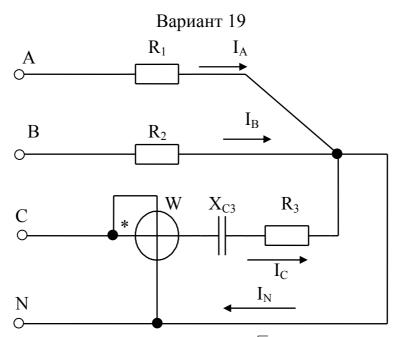
Определить все токи, фазные и линейные напряжения, показания ваттметра W, активную, реактивную, полную мощности. Построить векторную диаграмму.



Дано: R_1 = R_2 =20 Ом; R_3 =10 Ом; X_{L1} = $10\sqrt{3}$ Ом; показания ваттметра W составляют 250 Вт.


Дано: R_1 = R_2 = $40\sqrt{3}$ Ом; R_3 = $200\sqrt{3}$ Ом; R_4 = $50\sqrt{3}$ Ом; X_{L1} =40 Ом; X_{L2} =60 Ом; X_{C1} =20 Ом; X_{C2} =100 Ом; X_{C3} =40 Ом; показания амперметра A составляют 2 А.

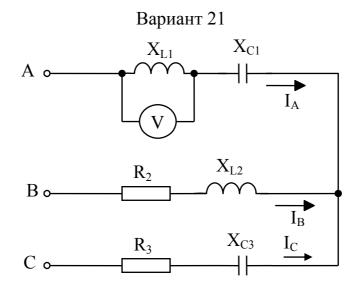
Определить все токи, фазные и линейные напряжения, показания ваттметра W, активную, реактивную, полную мощности. Построить векторную диаграмму.


Дано: $R_1=R_3=30\sqrt{3}\,$ Ом; $X_{L1}=30\,$ Ом; $X_{L3}=70\,$ Ом; $X_{C1}=15\,$ Ом; $X_{C3}=100\,$ Ом; $L=0,1\,$ мГн; $C=10^4\,$ мк Φ ; $U_{J}=300\sqrt{3}\,$ В; показания амперметра A равны нулю.

Определить частоту питающего напряжения f, все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

Дано:
$$R_1$$
=20 $\sqrt{3}$ Ом; R_2 = $\frac{80}{\sqrt{3}}$ Ом; X_{L1} =20 Ом; X_{L2} = $\frac{80}{\sqrt{3}}$ Ом; X_{C1} =80 Ом; X_{C2} = $\frac{80}{\sqrt{3}}$ Ом; U_{JI} =160 В.

Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

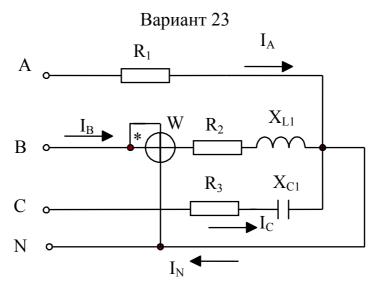


Дано: R_1 = R_2 =20 Ом; R_3 =10 Ом; X_{C3} = $10\sqrt{3}$ Ом; показания ваттметра W составляют 250 Вт.

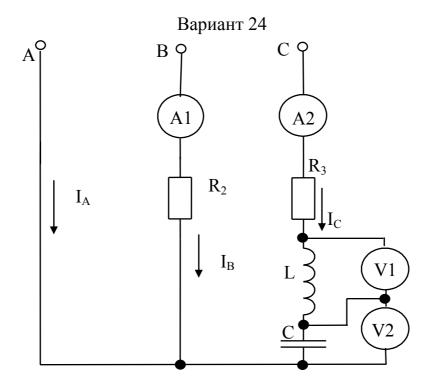


Дано: X_{L1} =50 Ом; X_{L3} =70 Ом; X_{L4} =170 Ом; X_{C1} =150 Ом; X_{C2} =200 Ом; $U_{\mathcal{I}}$ =150 $\sqrt{3}$ В; нагрузка симметрична.

Определить X_{L2} , X_{C3} , все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

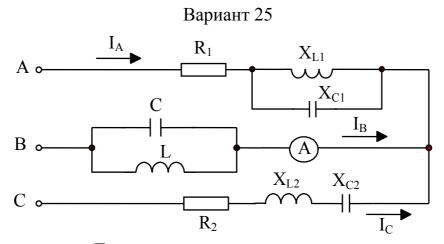


Дано: $R_2=R_3=30\sqrt{3}\,$ Ом; $X_{L1}=X_{L2}=X_{C1}=X_{C3}=30$ Ом; показания вольтметра V составляют 60 В.

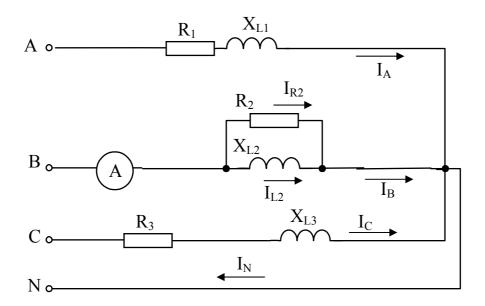


Дано: $R_1 = R_2 = 40\sqrt{3}$ Ом; $R_3 = \frac{80}{\sqrt{3}}$ Ом; $X_{L1} = 40$ Ом; $X_{L3} = 50$ Ом; $X_{C1} = 40$ Ом; $X_{C3} = 50$ Ом; $U_{J} = 160$ В.

Определить все токи, фазные напряжения, показания вольтметра V, активную, реактивную, полную мощности. Построить векторную диаграмму.



Дано: R_1 = 40 Ом; R_2 = R_3 =20 Ом; X_{L1} = X_{C1} =20 $\sqrt{3}$ Ом; показания ваттметра W составляют 320 Вт.

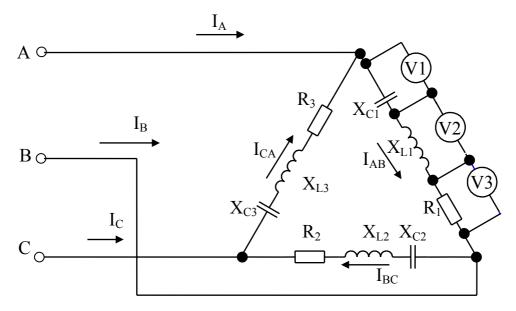

Дано: R_2 = R_3 =75 Ом; $C = \frac{1000}{\pi^2}$ мкФ; U_{π} =300 В; f=50 Гц; показания амперметров A1 и A2 одинаковы.

Определить L, все токи, фазные напряжения, показания вольтметров V1 и V2, активную, реактивную, полную мощности. Построить векторную диаграмму.

Дано: R_1 = R_2 = $30\sqrt{3}$ Ом; X_{L1} =15 Ом; X_{L2} =100 Ом; X_{C1} =30 Ом; X_{C2} =70 Ом; L=1 мГн; C=0,1 мкФ; $U_{\mathcal{I}}$ =240 В; показания амперметра A равны нулю.

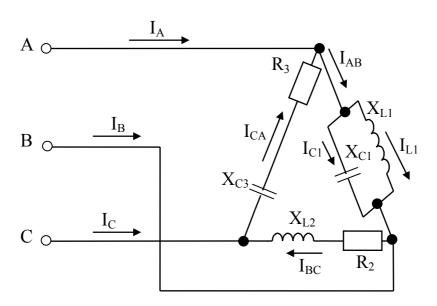
Определить частоту питающего напряжения f, все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

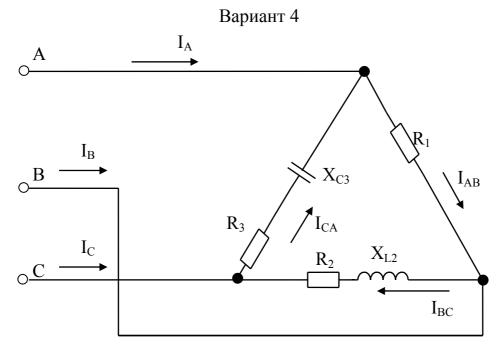
Дано: R_1 = R_3 = $10\sqrt{3}\,$ Ом; R_2 = $\frac{40}{\sqrt{3}}\,$ Ом; X_{L1} = X_{L3} = $10\,$ Ом; X_{L2} = $40\,$ Ом; показания амперметра A составляют $3\,$ А.


ЗАДАНИЕ ПО ТРЕХФАЗНЫМ ЦЕПЯМ ПЕРЕМЕННОГО ТОКА ПРИ СОЕДИНЕНИИ НАГРУЗКИ «ТРЕУГОЛЬНИКОМ»

Система линейных напряжений всегда симметрична. Условное обозначение на схемах:

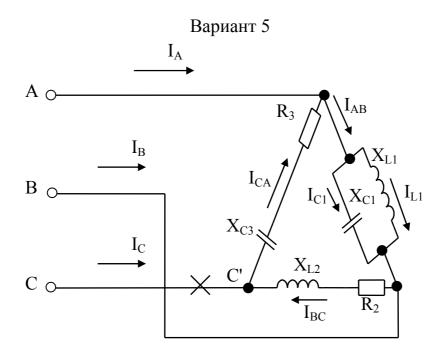
Вариант 1 I_A I_A I_{AB} I_{CA} I_{CA


Дано: $R_1=R_2=R_3$; $X_{L1}=X_{L2}=X_{L3}$; $X_{C1}=X_{C2}=X_{C3}=10$ Ом; линейный провод C находится в обрыве; показания вольтметров V1, V2 и V3 одинаковы и составляют 100 В.

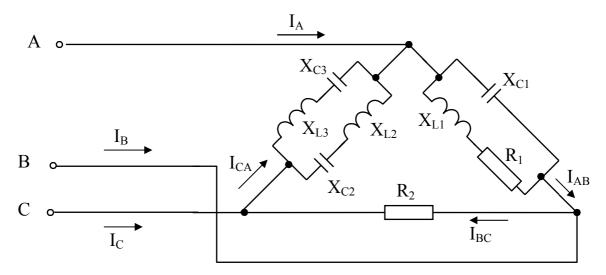

Дано: $R_1=R_2=R_3$; $X_{L1}=X_{L2}=X_{L3}$; $X_{C1}=X_{C2}=X_{C3}=10$ Ом; показания вольтметров V1, V2 и V3 одинаковы и составляют 100 В.

Определить R_1 , X_{L1} , все токи, линейные и фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

Вариант 3

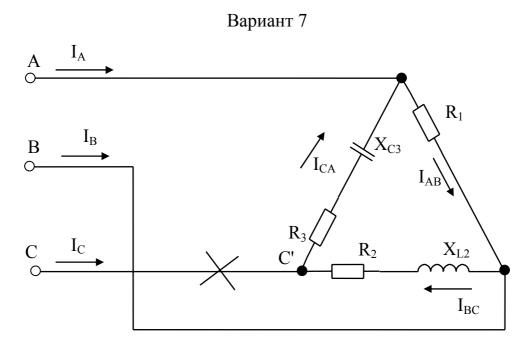


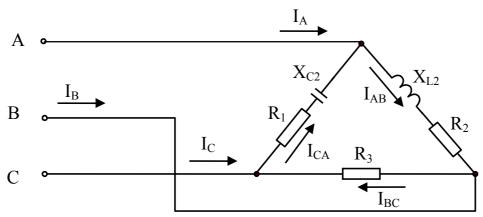
Дано: $R_2 = R_3 = X_{L1} = X_{C1} = 100$ Ом; $X_{L2} = X_{C3} = 100\sqrt{3}$ Ом; $U_{J} = 400$ В.



Дано: R_1 =20 Ом; R_2 = R_3 =10 Ом; X_{L2} = X_{C3} =10 $\sqrt{3}$ Ом; U_{JI} =100 В.

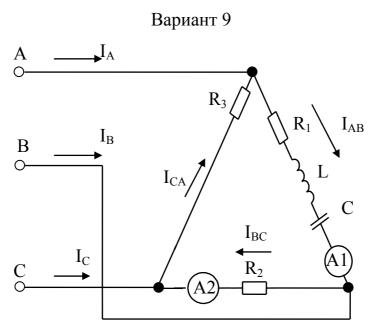
Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.


Дано: $R_2=R_3=X_{L1}=X_{L2}=X_{C1}=X_{C3}=100$ Ом; $U_{\it П}=400$ В; линейный провод C находится в обрыве.

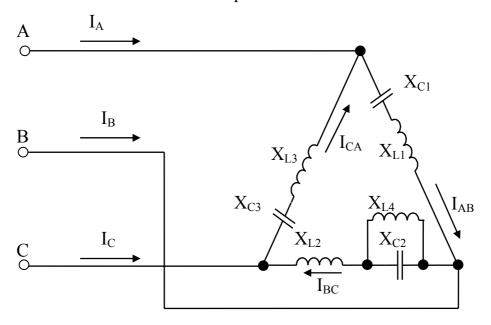

Дано: R_1 =30 $\sqrt{3}$ Ом; R_2 = $\frac{120}{\sqrt{3}}$ Ом; X_{L1} =30 Ом; X_{L2} =50 Ом; X_{L3} =100 Ом;

 X_{C1} =120 Ом; X_{C2} =100 Ом; X_{C3} =50 Ом; U_{J} =240 $\sqrt{3}\,$ В.

Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

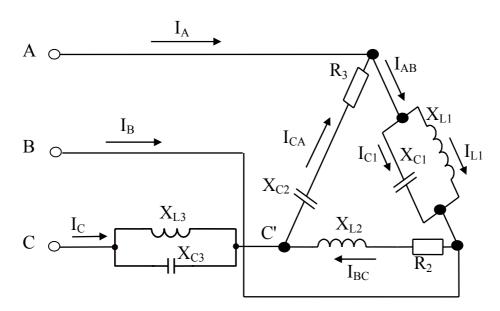


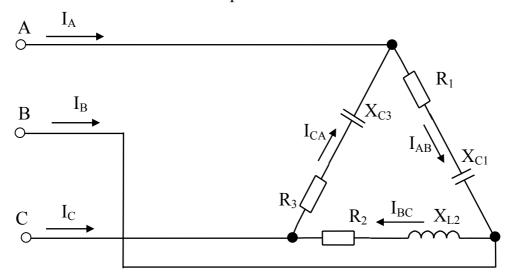
Дано: R_1 =20 Ом; R_2 = R_3 =10 Ом; X_{L2} = X_{C3} =10 $\sqrt{3}$ Ом; U_{J} =100 В; линейный провод C находится в обрыве.


Дано: $R_1 = R_2 = 100$ Ом; $R_3 = 200$ Ом; $X_{L2} = X_{C2} = 100\sqrt{3}$ Ом; $U_{JI} = 200$ В.

Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

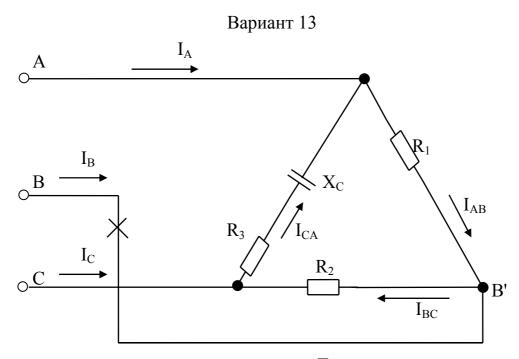
Дано: R_1 = R_2 = R_3 =100 Ом; C= $\frac{250}{\pi^2}$ мк Φ ; L=100 м Γ н; $U_{J\!I}$ =300 В; показания амперметров A1 и A2 одинаковы.


Определить частоту питающего напряжения f, все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

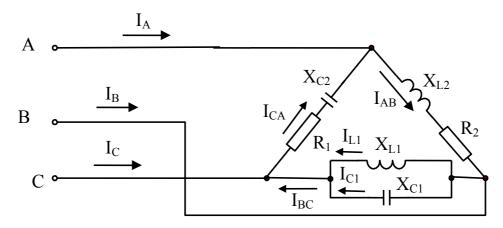

Дано: X_{L1} =120 Ом; X_{L2} =60 Ом; X_{C1} =80 Ом; X_{C3} =10 Ом; X_{L4} =20 Ом; $U_{Л}$ =300 В; нагрузка симметрична.

Определить X_{L3} , X_{C2} , все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

Вариант 11

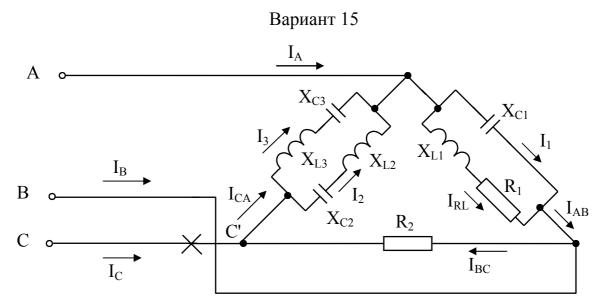


Дано: $R_2 = R_3 = X_{L1} = X_{L2} = X_{L3} = X_{C1} = X_{C2} = X_{C3} = 100 \text{ Ом}$; $U_{\mathcal{I}} = 300 \text{ B}$.

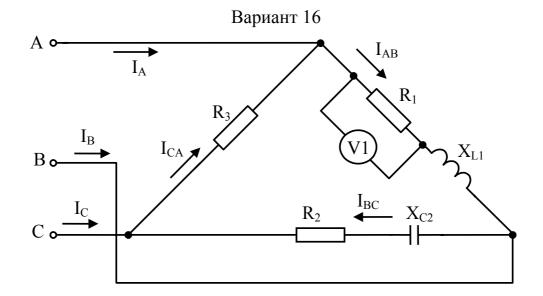


Дано: $R_1 = R_2 = R_3 = 10\sqrt{3}$ Ом; $X_{C1} = X_{L2} = X_{C3} = 10$ Ом; $U_{JI} = 100$ В.

Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

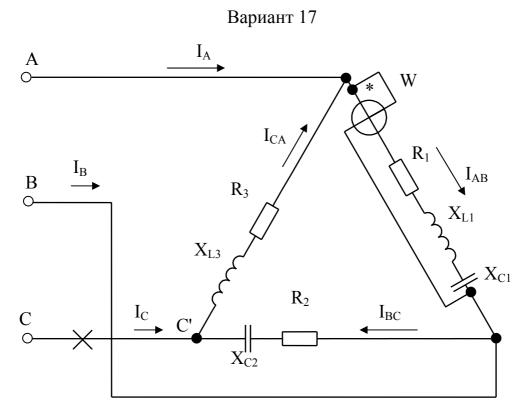


Дано: R_1 = R_2 =20 Ом; R_3 =10 Ом; X_C =10 $\sqrt{3}$ Ом; линейный провод B находится в обрыве; U_J =100 В.

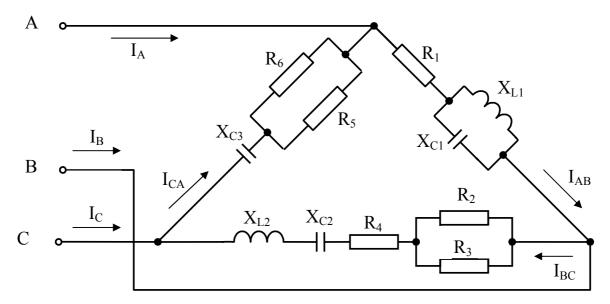


Дано: $R_1 = R_2 = 75$ Ом; $X_{L1} = X_{L2} = X_{C1} = X_{C2} = 75\sqrt{3}$ Ом; $U_{JI} = 150$ В.

Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

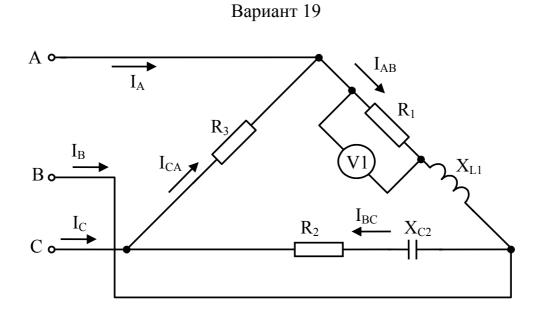


Дано: R_1 =30 $\sqrt{3}$ Ом; R_2 = $\frac{120}{\sqrt{3}}$ Ом; X_{L1} =30 Ом; X_{L2} =50 Ом; X_{L3} =100 Ом; X_{C1} =120 Ом; X_{C2} =100 Ом; X_{C3} =50 Ом; линейный провод C находится в обрыве; U_{AB} =240 $\sqrt{3}$ В.

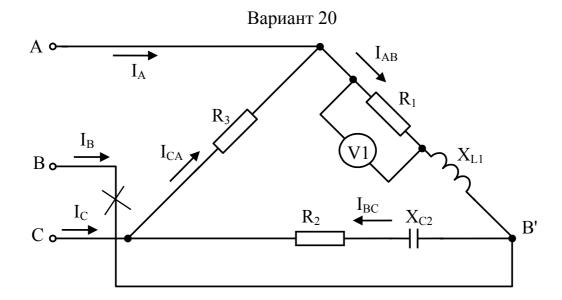


Дано: R_1 = R_2 =50 Ом; R_3 =100 Ом; X_{L1} = X_{C2} =50 $\sqrt{3}$ Ом; показания вольтметра V1 составляют 200 В.

Определить все токи, фазные и линейные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

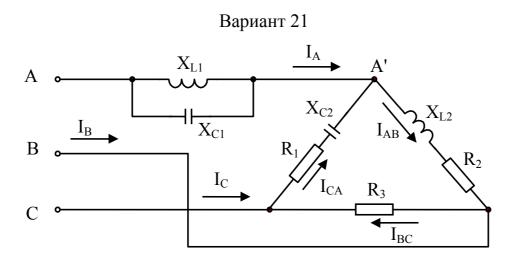


Дано: $R_1=R_2=R_3$; $X_{L1}=X_{L3}=X_{C1}=X_{C2}=300$ Ом; линейный провод C находится в обрыве; $U_{AB}=300$ В; показания ваттметра W составляют 150 Вт.

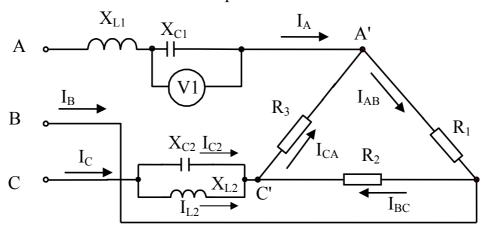


Дано: R_1 = R_2 =40 Ом; R_4 =20 Ом; R_5 =80 Ом; X_{L2} =100 Ом; X_{C1} =15 Ом; X_{C3} =30 Ом; U_{J} =200 В; нагрузка симметрична.

Определить R_3 , R_6 , X_{L1} , X_{C2} , все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

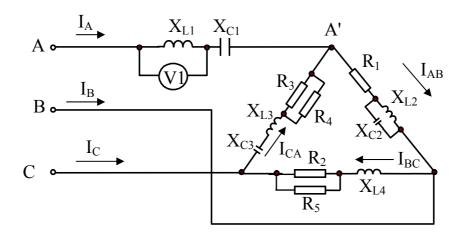


Дано: R_1 = R_2 =50 Ом; R_3 =100 Ом; X_{L1} = X_{C2} =50 $\sqrt{3}$ Ом; показания вольтметра V1 составляют 200 В.

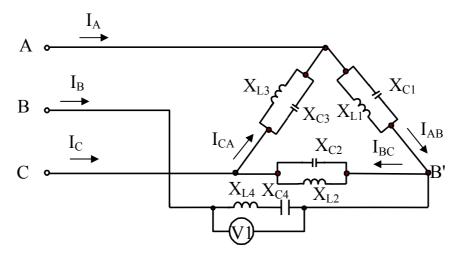


Дано: R_1 = R_2 =50 Ом; R_3 =100 Ом; X_{L1} = X_{C2} =50 $\sqrt{3}$ Ом; линейный провод B находится в обрыве; показания вольтметра V1 составляют 200 В.

Определить все токи, фазные и линейные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

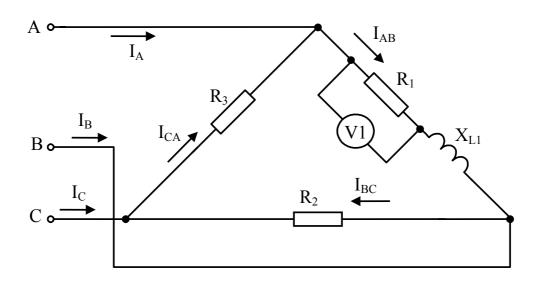

Дано: $R_1 = R_2 = R_3 = 100$ Ом; $X_{L1} = X_{L2} = X_{C1} = X_{C2} = 75$ Ом; $U_J = 200$ В.

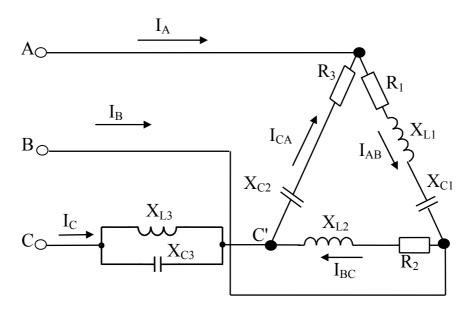
Дано: R_1 =30 Ом; R_2 =20 Ом; R_3 =10 Ом; X_{L1} = X_{L2} = X_{C1} = X_{C2} =100 Ом; показания вольтметра V1 составляют 200 В.


Определить все токи, фазные и линейные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

Вариант 23

Дано: R_1 =40 Ом; R_2 =120 Ом; R_3 = R_4 =80 Ом; R_5 =60 Ом; X_{L2} =25 Ом; X_{L1} = X_{C1} = X_{C2} = X_{C3} = X_{L4} =50 Ом; X_{L3} =100 Ом; показания вольтметра V1 составляют $100\sqrt{3}$ В.


Вариант 24


Дано: $X_{L1}=X_{L3}=X_{C1}=X_{C2}=80$ Ом; $X_{L2}=X_{L4}=X_{C3}=X_{C4}=40$ Ом; $U_{J}=400$ В.

Определить все токи, показания вольтметра V1, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.

Вариант 25

Дано: R_1 =50 Ом; R_2 = R_3 =100 Ом; X_{L1} =50 $\sqrt{3}$ Ом; показания вольтметра V1 составляют 200 В.

Дано: $R_1=R_2=R_3=X_{L1}=X_{L2}=X_{L3}=X_{C1}=X_{C2}=X_{C3}=100$ Ом; $U_{\it Л}=200$ В. Определить все токи, фазные напряжения, активную, реактивную, полную мощности. Построить векторную диаграмму.