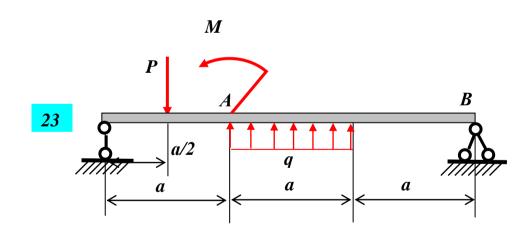
Задача № 4.


Заданная стальная балка нагружена сосредоточенной силой P, распределенной нагрузкой q и сосредоточенным изгибающим моментом M (Табл.4). Требуется:

- 1. Определить опорные реакции.
- 2. Построить эпюры поперечных сил Q_{v} и изгибающих моментов M_{z} .
- 3. Подобрать поперечное сечение балки в виде двутавра, приняв допускаемое значение напряжения равным 160 МПа.
- 4. Для сечения балки, находящемся на расстоянии a/2 от левого конца, построить эпюры нормальных σ_x и касательных τ_{xy} напряжений. При наличии разрывов в эпюрах Q_y или M_z , рассмотреть сечение, принадлежащее левой части балки.
- 5. Провести аналитически (с помощью формул) и графически (построением кругов Мора) анализ напряженного состояния в точке перехода полки балки в стенку в зоне растяжения на уровне минимальной ширины поперечного сечения, указанного в пункте 4. Результаты анализа представить на элементарном кубике.
- 6. Используя интеграл Мора, определить линейное перемещение сечения ${\bf A}$ и угловое перемещение сечения ${\bf B}$.

Таблица 4

Варианты исходных данных к задаче 4.

Номер	Длина участка	Сосредоточенная	Соотношение	Соотношение
варианта	балки, \pmb{a} , м	нагрузка, $ extbf{\emph{P}}$, кН	q и P : $n = q.a/P$	M и $P: m = M/P.a$
23	1,2	90	2	2

